
Marginalization without Summation
Exploiting Determinism in Factor Algebra

Sander Evers, Peter J.F. Lucas

Institute for Computer and Information Sciences
Radboud University Nijmegen

s.evers@cs.ru.nl, peterl@cs.ru.nl

Abstract. It is known that solving an exact inference problem on a
discrete Bayesian network with many deterministic nodes can be far
cheaper than what would be expected based on its treewidth. In this
article, we introduce a novel technique for this: to the operations of
factor multiplication and factor summation that form the basis of many
inference algorithms, we add factor indexing. We integrate this operation
into variable elimination, and extend the minweight heuristic accordingly.
A preliminary empirical evaluation gives promising results.

Keywords: Bayesian networks, exact inference, factor algebra, deter-
ministic variables

1 Introduction

In general, exact inference on a Bayesian network with discrete variables is known
to take O(dw) time, where d is the domain size (assuming it is the same for each
variable) and w is the treewidth of the network’s moral graph[4]. In the canonical
technique for exact inference, variable elimination[11], this constraint manifests
itself as the minimal size of the largest factor that is created during the execution
of the algorithm; implemented as a multidimensional array, it has w dimensions
and d entries per dimension.

When a network contains deterministic nodes, inference can be much faster.
One example where this can be seen is the approach of Chavira and Darwiche[1],
in which a Bayesian network is transformed into a logical theory, and inference
is performed by counting the models of this theory. These models should be
consistent with the constraints imposed by the deterministic nodes. A good
model counting algorithm can use these constraints effectively to prune the
model search space. This approach, however, is quite remote from other infer-
ence algorithms in that it does not compute per-variable probabilities ‘in bulk’
by multiplication and summation of factors.

An approach by Larkin and Dechter[8] does use these factor operations. Here,
a factor is implemented not as an array (with an entry for each possible variable
assignment), but as a list of variable assignments that are nonzero (sometimes
called a sparse array). The length of this list can be much smaller than the size
of the array, but the overhead for multiplying and marginalizing factors is larger,

because the list has to be searched for values (possibly using a hash table). With
this alternative implementation of factors, ordinary variable elimination can be
performed.

The inference approach presented in this article is also based on the familiar
factor operations. Firstly, we use a cheap representation of factors for determin-
istic variables. More importantly, we introduce a new marginalization method
for these variables, which requires no summation and can therefore be much
faster. We apply this method in a variable elimination algorithm, and propose
an extended minweight heuristic informed by this method. However, because the
marginalization method is formulated as a rewrite rule for factor expressions, its
potential use is not limited to variable elimination, but can be extended to all
inference algorithms that use factor operations.

The remainder of the article has the following outline. Sect. 2 summarizes the
formal preliminaries for inference on Bayesian networks. In Sect. 3, we review
variable elimination, with an emphasis on the use of factor algebra. Our main
contribution, factor indexing, is presented in Sect. 4, followed by an empirical
evaluation in Sect. 5. In Sect. 6, we conclude and propose future work.

2 Formal Preliminaries

We consider Bayesian networks over a set V = {V1, . . . , Vn} of n discrete vari-
ables; each Vi has a finite domain dom(Vi). Formally, an instantiation v =
{V1=v1, . . . , Vn=vn} of these variables is a function that maps each Vi to a value
vi ∈ dom(Vi), often also called a state. With a little abuse of notation, we write
v∈V to let a variable v range over the possible instantiations of V, e.g. in a
summation. We follow the convention of using upper case for variables, lower
case for instantiations/values and boldface for sets.

A factor f over variables V is a function that maps every instantiation v∈V
to a number f(v) (often a probability). It is similar to an ordinary mathematical
function with multiple arguments, only it refers to them by name instead of
position. For example, where for ordinary functions in general f(x, y) 6= f(y, x),
for factors it is the case that f(X=x, Y=y) = f(Y=y,X=x); formally, the factor
f is applied to the set {X=x, Y=y}, but we omit the braces to reduce clutter.

In inference implementations, factors are stored as multidimensional arrays.
Where for ordinary functions these dimensions would be numbered conforming
to the function arguments, for factors they are named after variables, hence it

seems natural to define f ’s dimensionality as the whole set: dim(f)
def
= V. The

weight of a factor equals the size of the array needed to store all its values:

weight(f)
def
=
∏

Vj∈dim(f)|dom(Vj)|.
Factor algebra provides the tools for manipulating factors:

– Application f(v): Applying a factor f to an instantiation v with v∈dim(f) is
simply function application, and results in a single value. However, a factor
can also be partially applied, i.e. to an instantiation w ∈W ⊂ dim(f). The
result of this operation is a factor f ′ = f(w) with dim(f ′) = dim(f) \W.
Superfluous variables (/∈ dim(f)) are simply ignored: f(v, Vn+1=x) = f(v).

(f(w))(u)
def
= f(u,w)

(f ⊗ g)(v)
def
= f(v) · g(v)

(ΣWf)(u)
def
=
∑

w∈W

f(u,w)

f [V=d](u)
def
= f(u, V=d(u))

1V =d(V=v,u)
def
=

{
1 if v = d(u)

0 if v 6= d(u)

Fig. 1: Factor algebra. First, the
commonly found operations appli-
cation, multiplication and summa-
tion; next, our new operations in-
dexing and concretization.

f ⊗ 1 = f (1)

f ⊗ g = g ⊗ f (2)

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h =
⊗
{f, g, h} (3)

ΣVΣW f = ΣWΣV f = ΣV,W f (4)

ΣV (f ⊗ g) = ΣV f ⊗ g if V ∈ dim(f),

V /∈ dim(g)

(5)

ΣV (f ⊗ g) = f ⊗ΣV g if V /∈ dim(f),

V ∈ dim(g)

(6)

(
f ⊗ g

)
(e) = f(e)⊗ g(e) (7)(

ΣV f
)
(e) = ΣV f(e) if e does not

instantiate V
(8)

Fig. 2: Laws of factor algebra.

– Multiplication f ⊗ g: Multiplication of factors is lifted value multiplica-
tion. The result of this operation is a factor h = f ⊗ g with dim(h) =
dim(f) ∪ dim(g). Multiplication is associative and commutative; we write⊗

1≤j≤n fj = f1 ⊗ f2 ⊗ . . .⊗ fn for n-way multiplication, and 1 for its unit
element.

– Summation ΣWf : Summation over variables W removes the W variables
from the dimensionality of a factor by summing up all the values of instan-
tiations that differ only at W variables.

Formal definitions of these operations are listed in Fig. 1 (top). They obey several
equality laws (Fig. 2) which we will use to prove correctness of inference.

As our work is expressed in factor algebra, we go as far as to define Bayesian
networks in terms of factor algebra, in order to keep notation as coherent as
possible. A Bayesian network is a triple (V, par, cpd), where V consists of n
discrete variables as above; the function par maps each variable Vj to a set of
parents Vpar(j) ⊂ V in such a way that there are no cycles; the set cpd =
{cpd1, . . . , cpdn} contains, for each Vj , a factor cpd j over {Vj} ∪ Vpar(j) with
(ΣVj

cpd j)(vpar(j)) = 1 for each vpar(j)∈Vpar(j). Each Bayesian network defines

a factor jpd known as its joint probability distribution: jpd
def
=
⊗

1≤j≤n cpd j . It
can be proven that ΣVjpd = 1. An example (fragment) of a Bayesian network
with V = {X,Y, Z,A,M, . . .} is shown in Fig. 3, and applying the ⊗ and Σ
operations to its cpd factors is demonstrated in Fig. 4.

An inference query is defined as the joint distribution over a set of query
variables Q ⊆ V and an instantiation e of evidence variables E ⊆ V:

infQ,e
def
= (ΣRjpd) (e) where R = V \ (Q ∪E)

v︷ ︸︸ ︷
X

=
Y

=A= cpdA(v)

x0 y0 a0 1

x0 y0 a1 0
...

...

v︷ ︸︸ ︷
A=Z= cpdZ(v)

a0 z0 0.3

a0 z1 0.7
...

...

A
X Z

Y M

v︷ ︸︸ ︷
Y

=A=
M

= cpdM (v)

y0 a0 m0 0

y0 a0 m1 1
...

...

Fig. 3: Example fragment of a
Bayesian network, in which the cpd
factors for variables A, Z and M are
partially given. An array implemen-
tation of the factors would store the
values in typewriter font.

v︷ ︸︸ ︷
X

=
Y

=
Z=A=

M
= (cpdA ⊗ cpdZ ⊗ cpdM)(v)

x0 y0 z0 a0 m0 1 · 0.3 · 0 = 0

x0 y0 z0 a0 m1 1 · 0.3 · 1 = 0.3
x0 y0 z0 a1 m0 0 · . . . = 0

...
...

v︷ ︸︸ ︷
X

=
Y

=
Z=
M

= (ΣA(cpdA ⊗ cpdZ ⊗ cpdM))(v)

x0 y0 z0 m0 0

x0 y0 z0 m1 0.3
...

...

Fig. 4: Examples of applying the factor al-
gebra operators ⊗ and ΣA to the factors
from the Bayesian network. Note: as X=x0
and Y=y0 together determine that A=a0,
the first two values in the bottom factor
equal those in the top factor.

An inference procedure is an algorithm that, given an arbitrary Bayesian net-
work, query variables Q and evidence e, calculates the value of infQ,e.

Relation to the conventional definition. The jpd factor corresponds to the joint
probability distribution in the conventional definition: P(v) = jpd(v), and it is
easily shown that the conditional probability distributions P(vj |vpar(j)) derived
from this joint distribution equal the cpd j factors. The reason that we avoid
the P notation is that it often clashes with factor application. For example, for
W ⊂ V, P(W) denotes a distribution over W while jpd(w) is a factor over the
complement V \W. The two notations are related as follows: for a marginal
distribution, P(W) = ΣV\Wjpd, and for partial evidence, P(e) = (ΣV\Ejpd)(e).

3 Variable Elimination as Factor Rewriting

In this section, we review the inference procedure of variable elimination[11].
More precisely, variable elimination is a family of inference procedures param-
eterized by a variable elimination order which mostly determines its efficiency.
The order we use is the minweight heuristic, known in practice to outperform
other heuristics when variables have different domain sizes[7].

Algorithm 1: Minweight variable elimination.

Input: – Bayesian network (V, par, {cpd1, . . . , cpdn})
– query variables Q ⊆ V; evidence e (instantiation of E ⊆ V)

Output: result, a factor over Q equal to infQ,e

W := V \ (Q ∪E)
foreach cpdj do fj := cpdj(e)

while W is not empty do
choose Vi ∈W for which the cost of eliminate(Vi) is smallest
eliminate(Vi)
W := W \ {Vi}

result :=
⊗
{all remaining fj}

procedure eliminate(Vi)
p := 1

foreach fj s.t. Vi ∈ dim(fj) do
p := p⊗ fj
delete fj

fi := ΣVip

The algorithm, its correctness proof and the rationale for the heuristic pre-
sented here serve as a basis for our extended version, which will be introduced
in Sec. 4 and exploits deterministic variables.

Variable elimination (Alg. 1) roughly proceeds as follows: it starts out from
the collection of cpd j factors and directly applies the evidence e; then it repeat-
edly selects a variable Vi from R, removes the factors containing Vi from the
collection and replaces them by their product, with Vi summed out. These steps
are repeated until all variables from R have been eliminated. Note that at any
time, the remaining factors are stored in the fj variables (where the j indices
are in general not contiguous, as these variables are progressively deleted); this
scheme is chosen for the sake of extension into Alg. 2.

Postponing the question of the variable elimination order (i.e. selecting the
smallest cost) for a while, we first set out to prove that Alg. 1 produces the
correct result: a factor algebra expression that is equal to infQ,e.

Proof. Specifically, the invariant infQ,e = ΣW

⊗
{all remaining fj} holds at

the start of each loop iteration. At the first iteration,

ΣW

⊗
{all remaining fj} = ΣR

⊗
1≤i≤n cpd i(e) =

(
ΣR

⊗
1≤i≤n cpd i

)
(e)

with the last equality due to laws (7) and (8). This equals infQ,e by definition.
Next, by law (6):

ΣW

 ⊗
Vi /∈dim(fj)

fj ⊗
⊗

Vi∈dim(fj)

fj

 = ΣW\Vi

 ⊗
Vi /∈dim(fj)

fj ⊗ ΣVi

⊗
Vi∈dim(fj)

fj



Assume that the invariant holds at the start of the loop, so infQ,e equals the
left expression (in which we have divided up ‘all remaining fj ’ for convenience
into those that do and do not contain Vi). Now, at the end of the loop, W
will be set to W \ {Vi}, and the fj factors with Vi ∈ dim(fj) will be replaced
with fi := ΣVi

⊗
Vi∈dim(fj)

fj . Thus, the expression at the right is equal to

ΣW

⊗
{all remaining fj} for the values of W and fj at the start of the next

loop, and the invariant holds again. After the last loop, W is empty, so infQ,e =⊗
{all remaining fj} = result. ut

Having established that the algorithm produces a correct result, let us ex-
amine what this result actually consists of. Although Alg. 1 can certainly be
read to perform array operations at factor assignments such as p := p⊗ fj and
fi := ΣVip, and return an array with the correct values at the end, it does not
have to perform any array operations at all. Instead, we prefer the reading where
it performs a symbolic construction of a new factor algebra expression at these
points. In that case, the result of the algorithm is not an array, but a large sym-
bolic expression which, as we have just proven, is a rewriting of infQ,e. It can be
evaluated at a later stage to produce said array. Thus, the inference procedure
is divided into a rewrite phase and an evaluation phase.

The purpose of rewriting infQ,e is that the resulting expression is somehow
‘more efficient’, i.e. needs less time or space to execute. For this statement to
make any sense, we need to ascribe an operational semantics to factor algebra
expressions (as opposed to the denotational semantics of Fig. 1, in which both
expressions are equivalent, as they have the same value). This is easily done (e.g.
to perform f⊗g, first perform f and store its resulting array somewhere, then do
the same for g, and finally construct the result array by multiplying the stored
values); we do not elaborate any further on this. With an operational semantics
in place, one can define a cost function in terms of space or time needed.

The order in which Alg. 1 picks variables can now be explained in terms of
this cost function: at each iteration, it greedily picks the one which is cheapest to
eliminate (paying no attention to the effect that this might have on eliminating
other variables later on). To model the cost of an elimination step, we use the
size of the largest array constructed in that step, i.e. weight(p) for the final
value of p in eliminate(Vi). We define the cost like this in order to simulate the
existing minweight heuristic; it might pay off to consider other cost functions.
Note that, as weight(p) can be determined from the symbolic expression p, the
cost of eliminate(Vi) can be calculated without actually executing p.

This evokes an interesting parallel to query optimization in database man-
agement systems, in which it is common practice to construct and optimize a
query plan before executing it. Drawing on this parallel, it has already been
shown that variable elimination plans can be further optimized using database
techniques[2].

4 Factor Indexing

This section presents the main contribution of this article: factor indexing, and
its integration in variable elimination. We propose a rewrite rule for marginal-
ization without summation, and express it in factor algebra by introducing a
new indexing operation. Then, we extend Alg. 1 into Alg. 2, which uses this rule
to eliminate deterministic variables.

A variable Y ∈ V is called deterministic if its value is functionally determined
by the value of its parents (here X ⊂ V). This means that its conditional
probability distribution has the following form:

cpdY (Y=y,x) =

{
1 if y = dY (x)

0 if y 6= dY (x)

where dY is a factor over X with values in dom(Y), which we call Y ’s determinis-
tic factor. To make deterministic variables explicit, we now extend the definition
of a Bayesian network to (V, par, cpd,d): the set cpd still contains the factors
for non-deterministic variables V1, . . . , Vm, and the new set d contains the deter-
ministic factors for deterministic variables Vm+1, . . . , Vn. So, factor dj must be a
factor over par(Vj) with values in dom(Vj) (unlike a cpd j factor, Vj /∈ dim(dj)).
An example is shown in Fig. 5; it is the same Bayesian network fragment as in
Fig. 3, but now with explicit deterministic variables.

To emphasize the simplicity and generality of our rewrite rule, we first present
it in conventional notation for our running example. We show the marginalization
without summation of deterministic variable A:∑

a∈A
P(a|x, y)P(z |a)P(m|a, y) = P(z |A=dA(x, y))P(m|A=dA(x, y), y)

It relies on the following observation: given a certain x and y, the summation
contains only one nonzero term, because there is only one value for a that makes
P(a|x, y) nonzero. So, instead of summing, we can just substitute this value
dA(x, y) for every a.

Note that the left-hand side of the formula corresponds to the calculations
made by Alg. 1 when eliminating A: first the product cpdA ⊗ cpdZ ⊗ cpdM is
created (a factor over 5 variables), which is subsequently reduced by summing.
The deterministic variable elimination that we will define corresponds to the
right-hand side; to eliminate A, all we need to do is construct the two factors
over variables XY Z and MXY . Their multiplication can be postponed.

To use the above substitution in factor algebra, we introduce new operations:

– Indexing f [V=d]: Factor f is indexed in dimension V ∈ dim(f) by another
factor d, which has values in dom(V). The resulting factor f ′ = f [V=d] has
dim(f ′) = (dim(f) \ {V }) ∪ dim(d). Contrary to conventional indexing, the
dimensionality of f ′ can be larger than that of f .

– Concretization 1V=d: Deterministic factor d is turned into a ‘probabilistic’
factor over the variables {V } ∪ dim(d), whose value is 1 wherever the value
of variable V matches d’s function value.

v︷ ︸︸ ︷
X

=
Y

= dA(v)

x0 y0 a0
...

...

v︷ ︸︸ ︷
A=Z= cpdZ(v)

a0 z0 0.3

a0 z1 0.7
...

...

A
X Z

Y M

dA

dM

v︷ ︸︸ ︷
Y

=A= dM (v)

y0 a0 m1
...

...

Fig. 5: Same fragment as Fig. 3,
with explicit deterministic vari-
ables A,M . Their deterministic
factors store states of A,M instead
of probabilities.

v︷ ︸︸ ︷
X

=
Y

=
Z= cpdZ [A=dA](v)

x0 y0 z0 0.3

x0 y0 z1 0.7
...

...

v︷ ︸︸ ︷
X

=
Y

= dM [A=dA](v)

x0 y0 m1
...

...

v︷ ︸︸ ︷
X

=
Y

=
Z=
M

= (cpdZ [A=dA]⊗ 1dM [A=dA])(v)

x0 y0 z0 m0 0

x0 y0 z0 m1 0.3
...

...

Fig. 6: Applying the factor indexing operation
to the cpdZ and dM factors from the Bayesian
network. Their product equals the summed fac-
tor in Fig. 4.

Formal definitions can be found in Fig. 1 (bottom), and examples in Fig. 6.
Note that the definition of concretization corresponds to the factor containing
the conditional probability distribution of a deterministic variable. So, translat-
ing a network with explicit deterministic variables into a conventional one is done
by setting cpd j = 1Vj=dj

for all m < j ≤ n. We include the concretization oper-
ation because, in general, not every deterministic variable is eliminated by factor
indexing in our algorithm: sometimes it is necessary to treat its deterministic
factor as a conventional one.

With these definitions in place, we can express the above (example) rewrite
rule in factor algebra:

ΣA(1A=dA
⊗ 1M=dM

⊗ cpdZ) = 1M=dM [A=dA] ⊗ cpdZ [A=dA]

This formulation merits some clarification. As we cannot directly multiply de-
terministic and probabilistic factors with each other, the equality is stated at a
‘probabilistic’ level, i.e. with all deterministic factors concretized. An additional
complication is that A is not the only deterministic variable involved: M is deter-
ministic as well. We can choose to ignore this fact, i.e. treat M as probabilistic
and just index its concretization, which results in the factor 1M=dM

[A=dA].
However, this turns out to equal 1M=dM [A=dA], in which the deterministic fac-
tor dM is indexed by another deterministic factor dA. Unlike with multiplication,

this is no problem; see also Fig. 6. Consequently, we do not have to concretize
the dM factor when eliminating A in our elimination algorithm.

As we mentioned, the above rewrite rule can be generalized to any deter-
ministic variable. The elimination of deterministic variable Vi from a product of
factors fj and deterministic factors dj can be rewritten without ΣVi summation:

ΣVi

1Vi=di
⊗
⊗

Vj∈dim(fj)

fj ⊗
⊗

Vj∈dim(dj)

1Vj=dj

 =
⊗

Vj∈dim(fj)

fj [Vi=di] ⊗
⊗

Vj∈dim(dj)

1Vj=dj [Vi=di]

This rewrite rule can be seen as an addition to the laws in Fig. 2. It provides
more possibilities for rewriting an inference query, and can as such be used in
any inference procedure that makes use of factor operations. Here, we apply it in
a variable elimination algorithm with factor indexing (Alg. 2). It has the same
structure as Alg. 1, but is extended as follows:

– For a deterministic variable Vi, we store di instead of 1Vi=di .
– To eliminate a deterministic variable Vi, we use the rewrite rule: we index

all currently existing fj and dj factors over Vi by Vi=di, and delete di itself.
– Not all deterministic variables are eliminated like this: during the elimina-

tion of a non-deterministic variable Vi, all deterministic factors over Vi have
to be concretized. Also, for a deterministic evidence variable, its factor is
concretized during initialization.

The proposed elimination heuristic is again the cost of the next elimination step.
However, we update the definition of this cost to reflect the size of the factors
produced in this step. If Vi has no deterministic factor dj associated with it, the
cost is still weight(p). If it does, we define the cost to be∑

Vi∈dim(fj)

weight(fj [Vi=di]) +
∑

Vi∈dim(dj)

weight(dj [Vi=di])

For Alg. 2, a correctness proof is similar to the one above can be given. Its
invariant is:

infQ,e = ΣW

((⊗
{all remaining fj}

)
⊗
⊗{

1Vj=dj all remaining dj
})

5 Empirical Evaluation

We have implemented the factor algebra described above in Python, using the
package NumPy which provides an n-dimensional array and executes array oper-
ations using fast C loops (not unlike MATLAB). The ⊗ operator directly trans-
lates to NumPy’s array multiplication, which can handle the situation where
the operands have different dimensions. Indexing an array with another array is
supported in NumPy as well.

Algorithm 2: Minweight variable elimination with factor indexing.

Input: – Bayesian network w/det. vars (V, par, {cpd1, . . . , cpdm}, {dm+1, . . . , dn})
– query variables Q ⊆ V; evidence e (instantiation of E ⊆ V)

Output: result, a factor over Q equal to infQ,e

W := V \ (Q ∪E)
foreach cpdj do fj := cpdj(e)

foreach dj do
if Vj ∈ E then

fj := 1Vj=dj (e)

else
dj := dj(e)

while W is not empty do
choose Vi ∈W for which the cost of eliminate(Vi) is smallest
eliminate(Vi)
W := W \ {Vi}

result := (
⊗
{all remaining fj})⊗

⊗{
1Vj=dj all remaining dj

}
procedure eliminate(Vi)

if di exists then
foreach dj s.t. Vi ∈ dim(dj) do dj := dj [Vi = di]
foreach fj s.t. Vi ∈ dim(fj) do fj := fj [Vi = di]
delete di

else
p := 1

foreach dj s.t. Vi ∈ dim(dj) do
p := p⊗ 1Vj=dj

delete dj

foreach fj s.t. Vi ∈ dim(fj) do
p := p⊗ fj
delete fj

fi := ΣVip

We perform inference on 4 networks with deterministic nodes known from the
Bayesian network literature (the students network is from the UAI’08 evaluation
track). We also investigated 6 generated networks of 100 nodes, with 30 root
nodes and 70 nodes with 2 parents (randomly chosen from earlier generated
nodes). Each node has randomly generated probabilities; each of the 70 non-root
nodes has a chance of being deterministic, in which case we randomly generate
a deterministic function. Each variable has the same domain; between networks,
we vary the domain size (2 or 4). Also, we vary the fraction of deterministic
nodes (30%, 60%, 90% of the non-root nodes).

For each network, we take medians over 10 runs; in each run, we instantiate 10
randomly chosen1 evidence variables e and choose one random query variable Q.
Then we use algorithms Alg. 1 and Alg. 2 to generate a symbolic expression (a

1 However, for students, we took the 9 easiest evidence files from the UAI’08 evaluation.

Table 1: Experimental results. Numbers are median values over 10 random queries.
network # vars plan cost cost impr. eval. time (s) speedup

(det.) Alg. 1 Alg. 2 Alg. 1/Alg. 2 Alg. 1 Alg. 2 Alg. 1/Alg. 2

munin-1 189 (65) 278M 260M 1.00 6.94 7.91 0.935
munin-4 1041 (411) 23.3M 19.2M 1.22 0.481 0.382 1.25
diabetes 413 (24) 13.2M 13.1M 1.00 0.148 0.151 0.994
students 376 (304) 4.32M 14.7K 293 0.205 0.053 4.13

random-2-30 100 (±21) 16.3K 3.85K 2.91 0.0120 0.0106 1.15
random-2-60 100 (±42) 19.6K 2.47K 5.82 0.0121 0.0088 1.35
random-2-90 100 (±63) 14.6K 0.711K 15.0 0.0117 0.0064 1.90
random-4-30 100 (±21) 6.28M 2.38M 9.23 0.122 0.0536 5.38
random-4-60 100 (±42) 2.27M 49.0K 55.1 0.0504 0.0098 5.39
random-4-90 100 (±63) 4.41M 14.7K 257 0.0908 0.0065 16.3

plan) for infQ,e, i.e. we execute them as a rewrite phase as discussed in Sect. 3.
As it is completely implemented in Python (without regard for speed), we do
not time this phase; its performance would severely distort the overall timing
results.

We record the cost of the generated plans, i.e. the summed weight of all the
intermediate factors. In the second phase, we evaluate the plans and record the
(wall clock) duration. The experiments were performed on a machine with a
3GHz Intel Core2Duo processor and 2GB RAM.

Results are shown in Table 1: the factor indexing technique provides speedups
ranging up to 16×. Expectations are confirmed that it works best with a high
fraction of deterministic nodes and/or larger domain sizes. However, we noticed
that the variance in performance between runs can be high: we suspect that
the current heuristic can easily guide the algorithm in the wrong way, and will
investigate more robust heuristics in the future.

6 Conclusions and Future Work

We propose a new variable elimination technique for exact inference on Bayesian
networks, in which deterministic variables are eliminated not by summation but
by a factor indexing operation. We emphasize the role of factor algebra, which
enables (a) a concise definition of the algorithm, (b) a straightforward correctness
proof, and (c) a model for defining an elimination order heuristic in terms of the
cost of array operations. Indeed, our updated minweight heuristic has little to
do with the network’s graph structure anymore; this is in line with common
knowledge that treewidth is not so important for highly deterministic networks.

A preliminary empirical evaluation shows that the technique performs de-
cently on real-world networks (small speedups) and good on randomly generated
networks (speedups of 1–16). We expect much room for improvement here: first,
by developing heuristics that take into account the actual cost of performing the
different array operations instead of the size of the resulting array; second, by

exploiting low-level machine knowledge to decrease these actual costs (building
on the connection between inference optimization and database research which
we have pointed out). For example, current CPUs and GPUs often feature vec-
torized processing modes, which we expect can be exploited for the bulk array
operations of probabilistic inference. When used properly, this might outper-
form inference techniques for determinism that cannot be expressed as array
operations, e.g. [1, 8].

Furthermore, we argue that our technique has much potential for combination
with other inference algorithms that use factor operations, e.g. junction tree
propagation[9], recursive conditioning[3] and factor decomposition techniques[5,
6, 10].

Acknowledgements

The authors have been supported by the OCTOPUS project under the respon-
sibility of the Embedded Systems Institute. The OCTOPUS project is partially
supported by the Netherlands Ministery of Economic Affairs under the Embed-
ded Systems Institute program.

References

1. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6-7), 772–799 (2008)

2. Corrada Bravo, H., Ramakrishnan, R.: Optimizing MPF queries: decision support
and probabilistic inference. In: SIGMOD Conference. pp. 701–712 (2007)

3. Darwiche, A.: Recursive conditioning. Artif. Intell. 126(1-2), 5–41 (2001)
4. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artif. Intell.

113(1-2), 41–85 (1999)
5. Dı́ez, F.J., Galán, S.F.: Efficient computation for the Noisy MAX. Int. J. Intell.

Syst. 18(2), 165–177 (2003)
6. Heckerman, D., Breese, J.S.: Causal independence for probability assessment and

inference using Bayesian networks. IEEE Transactions on Systems, Man and Cy-
bernetics, Part A 26(6), 826–831 (1996)

7. Kjærulff, U.: Triangulation of graphs — algorithms giving small total state space.
Tech. Rep. R-90-09, Dept. of Mathematics and Computer Science, Aalborg Uni-
versity (1990), http://www.cs.aau.dk/ uk/papers/R90-09.ps.gz

8. Larkin, D., Dechter, R.: Bayesian inference in the presence of determinism. In:
Bishop, C.M., Frey, B.J. (eds.) Proceedings of Ninth International Workshop on
Artificial Intelligence and Statistics. Key West, USA (2003)

9. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B 50(2), 157–224 (1988)

10. Vomlel, J.: Exploiting functional dependence in Bayesian network inference. In:
Darwiche, A., Friedman, N. (eds.) UAI ’02, Proceedings of the 18th Conference in
Uncertainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta,
Canada. pp. 528–535. Morgan Kaufmann (2002)

11. Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network infer-
ence. J. Artif. Intell. Res. (JAIR) 5, 301–328 (1996)

