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Abstract. This paper presents FunctionalForms, a combinator library
for constructing fully functioning forms in a concise and flexible way. A
form is a part of a graphical user interface (GUI) restricted to displaying
a value and allowing the user to modify it. The library is built on top of
the medium-level GUI library wxHaskell. To obtain complete separation
between the structure of a form’s layout and that of the edited values,
we introduce a novel use of compositional functional references.

1 Introduction

In many applications, the graphical user interface (GUI) contains parts which
can be considered forms: they show a set of values, and allow the user to update
them. For example, the omnipresent dialogs labeled Options, Settings and Prop-
erties are forms. Also, an address book can be considered a form. (Note that in
our sense of the word, a form is not only used for input but also for output.)

Despite their simple functionality, programming these forms is often a time-
consuming task. A lot of code is spent on converting values and passing them
around; furthermore, creating even the smallest form requires quite some knowl-
edge about the architecture of the GUI library. For larger forms, the code tends
to get monolithic, badly readable and inflexible.

In this paper we present the combinator library (or embedded domain-specific
language) FunctionalForms, built on top of the GUI library wxHaskell[1] (while
our earlier work[2] shows that the ideas are general enough to build it on top of
another library, Object I/O[3]). It is dedicated for building forms in a concise and
compositional way, and abstracts over low-level implementation details. A form
built with FunctionalForms can be used as an action on initial data; it returns
the modified data in the IO monad.

We take special care to preserve the expressivity of wxHaskell’s layout com-
binators, and to separate the look of a form (what are its constituent forms
and what is their relative layout) from the structure of the edited value. It is
especially this part of FunctionalForms that is the most important contribution
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of our framework: we present a technique which uses compositional functional
references in a novel way to completely separate the two structures.

To indicate the need for a combinator library for forms, we start with a small
form programming example in wxHaskell (Sect. 2). Next, FunctionalForms is de-
veloped in two stages. In Sect. 3, we define the form abstraction and construct a
näıve combinator library for it; in Sect. 4, we transform this library using com-
positional functional references in order to obtain the desired layout freedom. An
elaborate example of programming with FunctionalForms is presented in Sect. 5.
Related work is discussed in Sect. 6 and we conclude in Sect. 7.

2 Form Programming with wxHaskell

A recent GUI library for Haskell is wxHaskell[1], an interface to the extensive
cross-platform C++ library wxWidgets[4]. Since wxHaskell (intentionally) does
not introduce a complete new programming model, programming follows an
object oriented style. We show what this means by giving an example of form
programming in wxHaskell.1 It illustrates the problems of programming forms
at a too low level (see Sect. 2.2) and serves as running example throughout the
paper.

2.1 Example: A Door Information Form

The form we define shows and alters information about a certain door: the name
of the person who works behind it and whether s/he is available. This information
is exchanged with the rest of the system using a pair of type (String,Bool). The
GUI (see Fig. 1) consists of a small dialog window with four controls: a text
entry control to show and alter the name, a drop-down choice control showing
either ‘come on in’ or ‘do not disturb’ and two buttons to close the dialog: OK
to confirm the changes we made and Cancel to reject them.

Figure 2 shows the code producing this dialog. We give a short overview:

– The program starts by creating an empty dialog2 and the four controls to
populate it. For every object, a pointer (pdialog , pentry , . . . ) is returned.
Controls have dynamic attributes which can be manipulated by the user
and/or the program during their lifetime. In particular, the text and selection
attributes (on the entry and choice control, resp.) are set3 to the form’s initial
values (contained in initDoor). We have to convert the Bool value into an
Int first.

– Next, the dialog’s layout is specified. The function widget creates layout
information from a control pointer; the combinators margin, column, row

1 The version of wxHaskell used throughout this paper is 0.8.
2 Although the terms dialog, window and frame have slightly different technical mean-

ings, we will use them interchangeably.
3 The ‘assignment operator’ := looks like a language construct, but is actually just

an infix data constructor defined in the wxHaskell library.



A Functional Programming Technique for Forms in GUI 37

Fig. 1. Door information form

doorForm parentWindow initDoor =
do let (initName, initAvail) = initDoor

— create dialog and controls
pdialog ← dialog parentWindow []
pentry ← entry pdialog [text := initName]
pchoice ← choice pdialog

[ items := [”come on in”, ”do not disturb”]
, selection := bool2int initAvail
]

pok ← button pdialog [text := ”OK”]
pcancel ← button pdialog [text := ”Cancel”]

— set layout
let mylayout =

margin 6 $ column 10
[ row 5 [widget pentry , widget pchoice]
, alignRight $ row 5 [widget pok , widget pcancel ]
]

set pdialog [layout := mylayout ]

— define event handlers
let getFinalDoor =

do finalName ← get pentry text
finalAvail ← liftM int2bool $ get pchoice selection
return (finalName, finalAvail)

let setclose close =
do set pok [on command :=

do finalDoor ← getFinalDoor ; close $ Just finalDoor ]
set pcancel [on command := close Nothing ]

— run dialog
maybeDoor ← showModal pdialog setclose
return $ case maybeDoor of

Just finalDoor → finalDoor
Nothing → initDoor

where bool2int b = if b then 0 else 1
int2bool i = (i == 0)

Fig. 2. wxHaskell code for door information form
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and alignRight join and transform this information. All layout information
is of type Layout (we will encounter this type again in Sect. 3.1). Note that
the integers 6, 10 and 5 only specify margin widths between controls; actual
coordinates are determined by wxHaskell’s layout system, which also takes
care of resizing controls.

– Both buttons are assigned an event handler : a call-back function (IO action)
invoked when the user presses the button. It can access the dynamic proper-
ties of another control by calling a get or set function with the corresponding
control pointer and property. In the OK button’s event handler, we obtain
the current String and Int values from the pentry and pchoice controls, con-
vert the latter back into a Bool and join them into a tuple again.

– The last few lines run the dialog modally4 and determine the function’s
result: the new values from the controls if the dialog was closed using the
OK button, and the initial value initDoor otherwise.

This doorForm function can be used as an IO action in a wxHaskell program.

2.2 Programming Problems Identified

The first thing one may notice about the above example is that, considering the
minimal functionality that our dialog provides, 39 lines of code is rather sizable.
In the light of defining a form, the only original decisions we express are:

1. We are editing a (String ,Bool) pair; its components are associated with a
text entry control and a choice control, respectively.

2. Regarding the latter, the value True is associated with the first item, labeled
‘come on in’, and False with the second item, labeled ‘do not disturb’.

3. The choice control is placed to the right of the text entry control.

These decisions are encompassed within a lot of procedural code. Moreover, we
see that the first two are encoded twice:

1. (i) During control creation, the text attribute of control pentry is set to the
pair’s first element; the selection attribute of pchoice is set to the second.

(ii) In the button event handler, the values of the same two attributes are
retrieved, and a pair is constructed in the same way.

2. (i) During control creation, the Bool is converted to Int .
(ii) In the button event handler, the Int is converted to Bool .

This reduces the modularity and flexibility of our program: if we want to change,
say, the choice control into a check box control, we need to make consistent
adaptations at two different places.

A third problem, pointed out by Leijen[1], is the possibility to create incorrect
layout specifications: forgetting or duplicating a control causes run-time errors.

All three symptoms are evidence that the programming level is too low for
forms. In the next section, we design a combinator library to abstract over this
level.

4 i.e. the dialog blocks interaction with the rest of the application until it is closed.
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3 A Näıve Combinator Library for Forms

In this section, we develop the first stage of FunctionalForms, which focuses on
abstracting over low-level form programming details. Structured as a typical
combinator library, it revolves around a central data type (FForm) that repre-
sents both the smallest (atomic) and largest parts of the constructed program;
combinators combine and transform these parts.

A value of this type is a form: a part of the GUI that is only able to display
and alter a certain value. A form lives within a surrounding dialog with OK and
Cancel buttons. When this dialog appears, the form has an initial value which
is provided by its environment; subsequently, the user can read and alter this
value; at the end, the user closes the dialog with one of the buttons, and the
form passes the final value to the environment. The type of this value is called
the subject type of the form. It appears as type parameter t in the FForm type:

type FForm t w = Window w → t → IO (Layout , IO t)

The top-level IO action, provided with a pointer to a parent window and an
initial value, creates the controls which make up the form. It returns a Layout
value for this form and another IO action. This action is used when the dialog is
closed with the OK button; it retrieves the form’s current value at that moment.

3.1 Components of the Library

Atomic forms correspond to single wxHaskell controls which contain an editable
value, such as entry . This value is held in some attribute of the control, in
this case text . The definition of the corresponding form entry′ simply joins the
creation, layout, and attribute-reading functions for this control:

entry′ :: FForm String w
entry′ = λw init →

do pentry ← entry w [text := init ]
return (widget pentry , get pentry text)

In Fig. 3, some other atomic forms, their subject types, and the corresponding
wxHaskell attributes are shown. They are defined analogously. We follow the
convention that all exported library functions are underlined.

Forms can be combined into larger forms: taken together, an entry′ and a
checkBox′ edit a composite value (containing a String and a Bool). Näıvely, a
combinator for joining forms therefore joins their subject types as well as their
Layout values. However, this will turn out to be a source of trouble for the library
(see Sect. 3.2). We demonstrate this with the combinator �, which conveniently
suits our doorForm example:

(�) :: FForm t1 w → FForm t2 w → FForm (t1, t2) w
form1 � form2 = λw (init1, init2) →
do (lay1, getfin1) ← form1 w init1

(lay2, getfin2) ← form2 w init2
return ( row 5 [lay1, lay2], liftM2 (, ) getfin1 getfin2 )



40 S. Evers, P. Achten, and J. Kuper

Name Appearance Subject type wxHaskell attribute

entry′ String text

choice′ Int selection

radioBox′ Int selection

checkBox′ Bool checked

spinCtrl′ Int selection

Fig. 3. Some atomic forms and their subject types

As the type signature shows, the composite form’s subject type is a pair of its
components’ subject types. Its initial value (init1, init2) is split up and fed to
the two component forms; likewise, the two final values are joined back into a
pair (we lift the pair constructor into the IO monad). Regarding layout, both
components are put next to each other with a five-pixel gap in between.

Using only � and atomic forms, we can already concisely define a fully func-
tioning form for any combination of simple types expressed in nested pairs. For
example, a form for (String , (Bool ,Bool)) can be defined like:

composite = entry′ � (checkBox′ � checkBox′)

To actually use this form in a wxHaskell program, we would provide it with an
initial value init of type (String , (Bool ,Bool)) and run it:

do . . .
final ← runInDialog parentWindow composite init
. . .

The function runInDialog, when given a parent window, a form and an initial
value of the form’s subject type, yields an IO action producing a modal dialog
which contains the form, an OK button and a Cancel button. This is accom-
plished by:

1. Setting up the dialog with the buttons.
2. Executing the form’s IO action, which creates the controls in the dialog.
3. Augmenting the layout returned by (2) with the layout of the buttons, and

attaching it to the dialog.
4. Using the IO action returned by (2) in the OK button event handler to

retrieve the form’s final value.

The result of runInDialog’s IO action equals the form’s final value if the OK
button is used, and the initial value otherwise. We omit the implementation; it
is very similar to the corresponding fragments in Fig. 2.
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As the last addition to the combinator library, we define the function convert5

and its specialization convertL. They transform a form’s subject type into an
‘isomorphic’ type, given the corresponding bijection.

convert :: (t1 → t2, t2 → t1) → FForm t2 w → FForm t1 w

Often, a concept from the data domain, like week day or eye color, can be
captured with a simple enumerated type. To convert between such a type and
the zero-based Int index used in some atomic forms, we don’t need to write out a
full bijection; it suffices to enumerate the values in a list. The function convertL
then maps the first value to 0, the second to 1, etc.:

convertL :: Eq t ⇒ [t ] → FForm Int w → FForm t w
convertL items = convert (f , finv )

where f a = fromJust $ elemIndex a items
finv i = items!!i

We are now ready to define the form example from Sect. 2.1 in only three lines:

doorForm = entry′ � availForm
availForm = convertL [True,False] $

choice′ [items := [”come on in”, ”do not disturb”]]

3.2 Evaluation of the Combinator Library

An important thing to notice is that the combinator library we defined solves all
the problems mentioned in Sect. 2.2. Along with providing a very concise way
of specifying the relevant decisions, it also rules out the possibility of forgetting
or duplicating controls in the layout specification: an atomic form associates a
control with exactly one layout specification, and the combinators maintain this
invariant.6 However, the library has a disadvantage: � is a bad template for
form combinators, because it introduces a dependency between the subject type
structure and the layout structure of a form. This manifests itself in two ways:

Incompatible types: To increase the layout possibilities for composite forms,
the obvious solution would be to introduce combinators which mimic wx-
Haskell’s layout combinators. When we follow the � template, these combi-
nators also have to construct a subject type, but this often causes trouble:
– For one-argument combinators (which transform a single Layout) such

as margin, it is indeed no problem to ‘lift’ them into the FForm domain:
we just let them alter the form’s layout and leave the subject type alone.

– Lifting a zero-argument combinator such as label , which produces a
Layout by itself, is a little more problematic: the lifted combinator should
produce a form with a certain subject type and final value. In principle,
these can be the unit type and value (). However, every label used in a
composite form will then clutter its subject type with another ().

5 The implementation of convert can be found in Fig. 4.
6 In fact, a similar technique is briefly mentioned in [1] (section Safety).
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– Combinators of the form [Layout ] → Layout , such as row , cause even
more problems: providing the lifted combinator with a list of forms would
force them to have the same subject type. In principle, we could solve
this problem by extending the FForm type to also accommodate lists of
Layouts, and introducing combinators nilF and consF to produce such
forms, but then our doorForm example would turn into

doorForm = row ′ 5 $ entry′ ‘consF ‘ (availForm ‘consF ‘ nilF )

with subject type (String , (Bool , ())). In practice, this is rather awkward.
Dependency between layout and values: Say we want to swap the two con-

trols in the doorForm layout. If we just swap the two operands of �, we
also unintentionally change doorForm’s subject type from (String ,Bool) to
(Bool ,String). One way to hack around this would be to convert the new
form’s subject type back:

doorForm = convert (mirror ,mirror) (availForm � entry′)
where mirror (a, b) = (b, a)

. . . but this is no real solution: with larger forms—say we want to permute
eight controls instead of two—the programmer is heavily burdened by these
kind of ‘plumbing’ bijections. Not only is this much work, but it also has an
impact on the flexibility of the program: if later we decide to alter the layout
structure, we also need to alter the bijection functions again.

The cause of both problems is that we cram too much functionality into the
combinators, thereby creating dependencies between two structures which are,
in essence, largely unrelated. In the next section, we show how to factor the �

combinator into a layout combinator and a subject type combinator.

4 Separating Subject Type and Layout Combinators
Using Compositional Functional References

This section presents the second stage of FunctionalForms. It allows the user to
explicitly manage the subject type of a form, separate from its layout, using
two types of combinators: subject type combinators, like declare2 for a pair,
and layout combinators, like row′ and margin′ (derived from their wxHaskell
counterparts). This enables the definition of forms such as

declare2 $ λ(name, avail) →
row′ 5 [availForm avail , entry′ name]

to specify a door information form with the name at the first position in the
subject type, and at the last position in the layout structure. The connection
between the two structures is formed by special values (name and avail in the
example) which we call compositional functional references.
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4.1 Introducing Compositional Functional References

Reference values are members of an algebraic data type containing two functions:

data Ref cx t = Ref { val :: cx → t
, app :: (t → t) → cx → cx
}

Type variable cx denotes the type of the context, a structure of values, which
contains some sub-structure of type t . The first function retrieves a t value from
a cx structure, while the second updates a cx structure by applying a t → t
update function to the t value at the right spot. An example reference value is
reffst , a reference to the first element of a pair:

reffst :: Ref (t1, t2) t1
reffst = Ref fst appfst

where appfst f (x , y) = (f x , y)

Using reffst and refsnd , which is defined analogously, we can retrieve or update
the values in initcx = (39, ”foo”):

(val reffst) initcx ⇒ 39
(app reffst) (+3) initcx ⇒ (42, ”foo”)
(app refsnd) (const ”bar”) initcx ⇒ (39, ”bar”)

Note that when we partially apply the app functions by removing initcx in the
last two examples, we obtain functions of type cx → cx : a context update. We
include such a function in the new FForm type, which we now present.

4.2 Forms with References

In the transformed library, shown in the right-hand side of Fig. 4, every form has
access to the same context, whose type equals the subject type of the topmost
form composition. The new FForm type clearly shows this: a form no longer
depends on an initial value for itself, but rather on an initial context ; and instead
of producing a final value, it produces a final context update. In the OK button
event handler, this update will be applied to the initial context, yielding a final
context.

As the new definition of entry′ shows, an atomic form is now provided by the
programmer with a reference value. This determines which part of the context
it edits: the val function retrieves an initial value from this part and the app
function writes the final value to this part. The Ref type contains the form’s
subject type, in this case String . How the programmer obtains such a reference
value is explained in Sect. 4.3.

The combinator � is replaced by �. The resulting composite form distributes
the initial context among its components unaltered, instead of splitting it. Con-
versely, instead of pairing two final component values, it constructs a joint con-
text update by sequencing both component updates (this time, the function
composition operator is lifted into the IO monad).
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FunctionalForms stage 1 FunctionalForms stage 2

type FForm t w =
Window w → t →
IO (Layout , IO t)

type FForm cx w =
Window w → cx →
IO (Layout , IO (cx → cx ))

entry′ :: FForm String w
entry′ = λw init →

do pentry ← entry w [text := init ]
return ( widget pentry

, get pentry text
)

entry′ :: Ref cx String → FForm cx w
entry′ (Ref val app) = λw initcx →

do pentry ← entry w [text := val initcx ]
return ( widget pentry

, do t ← get pentry text ;
return $ app $ const t

)

(�) :: FForm t1 w → FForm t2 w
→ FForm (t1, t2) w

form1 � form2 = λw (init1, init2) →
do (lay1, getfin1) ← form1 w init1

(lay2, getfin2) ← form2 w init2
return ( row 5 [lay1, lay2]

, liftM2 (, ) getfin1 getfin2 )

(�) :: FForm cx w → FForm cx w
→ FForm cx w

form1 � form2 = λw initcx →
do (lay1, getupd1) ← form1 w initcx

(lay2, getupd2) ← form2 w initcx
return ( row 5 [lay1, lay2]

, liftM2 (.) getupd1 getupd2 )

— actually a template for deriving:
row′ ::

Int → [FForm cx w ] → FForm cx w
margin′ ::

Int → FForm cx w → FForm cx w
label′ :: String → FForm cx w
...

declare2 :: ((Ref cx t1, Ref cx t2) → z )
→ Ref cx (t1, t2) → z

declareL :: ([Ref cx t ] → z )
→ Ref cx [t ] → z

... — implementation: see running text

runInDialog :: Window w →
FForm t (CPanel ()) →
t → IO t

runInDialog :: Window w →
(Ref cx cx → FForm cx (CPanel ())) →
cx → IO cx

convert :: (t1 → t2, t2 → t1) →
FForm t2 w → FForm t1 w

convert (f , finv ) form = λw init →
do (lay , getfin) ← form w $ f init

return (lay , liftM finv getfin)

convert :: (t1 → t2, t2 → t1) →
(Ref cx t2 → z ) → (Ref cx t1 → z )

convert (f , finv ) refToForm ref =
refToForm (refiso • ref )
where refiso = Ref f (λg → finv . g . f )

Fig. 4. Transforming the combinator library
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Since the arguments of � are of the same type, the first problem in Sect. 3.2
is solved: � can easily be generalized to take a list of forms instead of two (and a
margin width value), thereby implementing the lifted version row′ of wxHaskell’s
layout combinator row . As the context update for base case [], we return id ,
the unit value for function composition. This is also the solution for lifting zero-
argument layout combinators like label .

The second problem is also solved: the two operands of � (and for row′: all
the forms in the list) can be freely swapped without any effect on the initial value
for the components or the final value for the composite form.7 We can conclude
that this combinator has no influence on the functionality of a form anymore;
indeed it is merely a lifted layout combinator.

In fact, using � as a template, we have lifted all of wxHaskell’s layout com-
binators into the FForm domain.8 However, for simplicity’s sake, we will still
restrict our use of layout combinators to � in the rest of this section.

4.3 Constructing the Subject Type with References

Since the new layout combinators do not construct the subject type, it has to be
done in another way: using reference values. For now, we are mainly concerned
with subject types consisting of nested pairs. We can derive the reference values
to their elements using the reference values to the elements of a simple pair, reffst
and refsnd . This is done by ‘normally’ composing their val functions (fst and
snd), while composing their app functions (appfst and appsnd) in the reverse
order. For example, a reference to the c value in (a, (b, (c, d))) is constructed
with:

Ref (fst . snd . snd) (appsnd . appsnd . appfst)

This pattern of constructing new reference values can be captured with the
operator • for composition of references:

(•) :: Ref b c → Ref a b → Ref a c
w • v = Ref (val w . val v) (app v . app w)

The reference value above can now be written reffst • refsnd • refsnd . With the •
operator, we can also construct new forms in a compositional way. We illustrate
this by means of the doorForm example, which is not compositional when defined
in a näıve way:

doorFormNC :: FForm (String ,Bool) w
doorFormNC = entry′ reffst � availForm refsnd

7 Provided that some conditions hold, e.g. that none of the atomic forms is supplied
with the same reference value. A formal proof of this can be found in [2].

8 Alternatively, the FForm domain can be structured as a monad. The monadic lifting
functions can then be used for this purpose.
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This form can only be used as a top-level form; it cannot be usefully joined with
another form, because doorFormNC � otherForm would force the context type
of otherForm to be (String ,Bool) as well. Compare this with the compositional
way of defining doorForm:

doorForm :: Ref cx (String ,Bool) → FForm cx w
doorForm ref = entry′ (reffst • ref ) � availForm (refsnd • ref )

This form can be used as a component of a larger form. Just like the atomic
forms, it should be supplied with a reference value pointing to its subject type
(String ,Bool) in a larger context cx . It uses this to derive reference values to a
String and a Bool for its sub-forms.

To enforce this pattern of form construction, the library does not export
reference creation functions, but only the subject type combinator declare2:

declare2 :: ((Ref cx t1, Ref cx t2) → z ) → Ref cx (t1, t2) → z
declare2 refsToForm ref = refsToForm (reffst • ref , refsnd • ref )

Using this combinator, the same doorForm definition can be written as:

doorForm = declare2 $ λ(name, avail) →
entry′ name � availForm avail

To enable the use of a compositional form like doorForm (i.e. parameterized by
a reference value) at the top level, the new runInDialog is defined to take just
this kind of form as its argument. It applies it to refid = Ref id id , the unit
element for • (turning doorForm back into doorFormNC ). This is what equates
the context type of every form to the subject type of this topmost form.

The new convert function also transforms compositional forms. It does this
by transforming the reference value that gets passed to a form. Interestingly,
this transformation can be performed by composing it with the appropriate
isomorphism reference; see Fig. 4 for details. Although the type of convertL
changes due to the type change of convert, its textual definition remains the
same. The same holds for the user-defined availForm in the doorForm example.

4.4 Reference Values for Other Subject Types

Up to this point, we have restricted the composite subject types to pairs. Of
course, we can easily extend the approach to tuples of higher arity by defining
declare3 et cetera.9 Using the same scheme as before, it is also possible to define
references to the head and tail of a list:

refhead :: Ref [t ] t
refhead = Ref head apphead where apphead f (x : xs) = f x : xs

9 Using Template Haskell[5], these definitions can be generated automatically. Further-
more, Haskell’s type classes can be used to unite the declare functions.
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reftail :: Ref [t ] [t ]
reftail = Ref tail apptail where apptail f (x : xs) = x : f xs

Subsequently, we can define the list of references to all possible list elements,
and a subject type combinator for a list (note how declareL resembles declare2):

refslist :: [Ref [t ] t ]
refslist = refhead : map (• reftail) refslist

declareL :: ([Ref cx t ] → z ) → Ref cx [t ] → z
declareL refsToForm ref = refsToForm $ map (• ref ) refslist

The following example illustrates the use of the functions defined in this section.

5 Elaborate Example

To give an impression of the concise declarative style of form programming with
FunctionalForms, we present a more elaborate example. While we have thus far
kept the atomic form entry′ as simple as possible for clarity, we use a more
flexible version here, with a small adaptation: every atomic form is extended
with a property list, which it passes on to its corresponding control.

The form we define is shown in Fig. 6; it edits a list of three alarms. Every
alarm consists of three components: a value indicating whether the alarm is
enabled, a time setting and a message. This information is encoded in a value
of type (Bool , Int ,String), where the integer represents the number of minutes
elapsed since midnight.

The corresponding code can be found in Fig. 5. In alarmListForm, an infinite
list of references is generated by declareL and bound to refs. Then, makeBox
assigns each reference to an alarmForm and puts a box around it. Finally, the
first three boxes are taken from the list and put in a column.

An alarmForm splits its reference into three parts, which it distributes over
a checkBox′, a timeForm and an entry′. The last two are arranged in a grid,
together with two labels (which are aligned middle-left in their cell). The check
box is placed left of the grid.

A timeForm converts the total number of minutes into a value for hours
and a value for minutes using div and mod , and assigns the corresponding two
references to a pair of spin controls. For these controls, minimum and maximum
values are set, as well as a custom size.

6 Related Work

The notion of compositional references was introduced by Kagawa[6] as a means
to compose mutable (i.e. destructively updatable) data structures, such as arrays,
in a functional language. Although it was proposed as a primitive data type,
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alarmListForm :: Ref cx [(Bool , Int ,String)] → FForm cx w
alarmListForm = declareL $ λrefs →

column′ 10 $ take 3 $ zipWith makeBox [1..] refs
where

makeBox nr ref = boxed′ (”Alarm ” + + show nr) (alarmForm ref )

alarmForm :: Ref cx (Bool , Int ,String) → FForm cx w
alarmForm = declare3 $ λ(enab, time,msg) →

margin′ 3 $ row′ 8 [ checkBox′ [] enab
, grid′ 5 5

[ [floatLeft′ $ label′ ”time :”, timeForm time]
, [floatLeft′ $ label′ ”message :”, entry′ [] msg ]
]

]
timeForm :: Ref cx Int → FForm cx w
timeForm = convert (splittime, jointime) $ declare2 $ λ(hrs,mins) →

row′ 2
[ spinCtrl′ 0 23 [outerSize := sz 40 20] hrs
, spinCtrl′ 0 59 [outerSize := sz 40 20] mins
]

where splittime total = (total ‘div ‘ 60, total ‘mod ‘ 60)
jointime (hours,minutes) = 60 ∗ hours + minutes

Fig. 5. Definition code for alarm list form

Fig. 6. Appearance of alarm list form

module Alarms(main) where

import Graphics.UI .WX
import FForms

main = start $
do f ← frame []

final ← runInDialog f
alarmListForm init

print final
close f

init =
[ (True, 450, ”wake up”)
, (False, 645, ”meeting”)
, (False, 1140, ”dinner”)
]

Fig. 7. Startup code for alarm list form

Kagawa also gives a functional account of the reference type. Our references
resemble this (except that we use an apply function instead of a write function
to facilitate composition) so we use the name compositional functional references.
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Closely related are lenses[7], which are also pairs of accessor and modificator
functions. Several operators, including composition, are used to combine lenses
into a large lens which is the program; this program specifies a bidirectional
transformation between model and view.

Although we have chosen for an underlying GUI library with an object ori-
ented style (which is more widely accepted), declarative form programming is
probably achieved most easily on top of a declarative GUI library like FranTK[8]
or Fudgets[9]. The latter even defines a form combinator >·< which closely resem-
bles � (see the corresponding PhD thesis[10], chapter 29). To obtain a layout
flexibility similar to ours, a unique name can be assigned to each sub-fudget;
these names are used in a name layout combinator which is applied to the com-
posite fudget. They play the same role as our references, but:

– Fudget names refer to parts of the layout. We believe that from a top-down
design perspective, it is more natural to name the parts of a data structure,
because this is designed first and less susceptible to change.

– Fudget names are identifier values. Generating these (unique) values is an
extra responsibility for the programmer that our approach does not have.

In functional GUI libraries which are more or less ‘object oriented’, GUI parts
are related using pointers to the controls themselves, instead of to the data
structures they edit (our approach) or their layout (the Fudgets approach). Like
we have shown in Sect. 2, the wxHaskell control creation functions return these
pointers as values in the IO monad. In Clean Object I/O[3], they are generated by
a shared environment at user request; in a GUI library for the Curry language[11]
(which has a more declarative flavour), these pointers are implemented using free
logic variables.

There are several functional libraries for Web form programming. We men-
tion WASH/CGI[12] here; this article provides an overview of the others. With
WASH/CGI, the programmer can refer to the (typed) value in a Web form using
input handles; like wxHaskell’s control pointers, these are returned as monadic
values by creation functions.

XForms[13], the recent W3C standard for declarative Web forms, also takes
the approach of naming parts (XML elements) of the data structure. This is
done in the first part of an XForms definition, the XForms Model. It also provides
every element with an initial value and possibly type or value constraints. In a
separate second part, the XForms User Interface, GUI controls are bound to
these elements by referring to their names.

Generic Graphical Editor Components (GECs)[14] use their ‘subject type’ to
convey layout information. A generic function[15] automatically derives the GUI
for any given subject type; to create a different GUI for a certain type, one can
specialize this function. In order to release this rigid coupling between subject
type and layout, abstract GECs[16] differentiate between a domain type and a
view type. The GUI is derived from the view type; mapping functions relate
domain values to view values, quite like in our convert function. Like Fudgets,
GECs differ from forms in their ability to react to user events during their whole
lifetime and to dynamically create new GECs for editing new values.
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7 Conclusions and Future Work

We have introduced FunctionalForms, a combinator library which facilitates the
programming of forms in a functional language. (Alternatively, it can be seen as
an embedded domain-specific language for forms.) First we showed how to build
a combinator library capturing the form abstraction on top of an underlying
GUI library with an object oriented programming style. This solved the prob-
lems of low-level programming like verbosity, but had a drawback: it coupled
subject type structure and layout combinator structure together. Then we used
compositional functional references in a novel way to release this dependency;
this also allowed us to exploit the full power of the layout combinators from the
underlying library wxHaskell.

Forms have limited functionality: value editing only affects the rest of the
system after the lifetime of a form, and forms can only edit a static, finite,
product-like structure of values. While we have already investigated the use
of sum-like structures[2] and synchronizing forms briefly, these are yet to be
integrated into one framework. However, our results are already of practical
use.10

A major advantage of our technique is that it does not depend on a special
GUI library or language construct. Our earlier work[2], in which we applied
the technique to the Clean Object I/O library[3], supports this statement. In
fact, the key characteristic of our use of compositional functional references is
very general: it allows two different structures to be built from the same set of
elements. Therefore, we believe that it can be applied in other areas of functional
programming as well.
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